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Abstract

We study both experimentally and numerically the convective flow in a tall vertical slot with differently heated walls. The flow is
investigated for the fluid with the Prandtl number Pr = 26, which is large enough to ensure the traveling waves as primary instability
and small enough to prevent boundary layer convection. The flow evolution is determined on the base of the visual observations,
power spectra and amplitude analysis. In the numerical simulations of two- and three-dimensional flows, we accept an assumption
of an infinite fluid layer. The satisfactory agreement with experiment is observed, and the sequence of convection states is discovered.
It starts with a plane-parallel flow as primary solution, which becomes unstable to two counter-propagating waves. It is followed by
a tertiary three-dimensional flow in the form of wavy traveling waves. As the Grashof number is increased even further, a chaotically
oscillating cellular pattern consisting of the pieces of broken waves arises. The formation of a structure in the form of the vertical

rolls chaotically modulated along axes concludes this complicated picture.
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1. Introduction

Since pioneering works by Gershuni (1953) and
Batchelor (1954) the problem which deals with the nat-
ural convection in a slot with a fixed temperature dif-
ference between the vertical side walls continues to
attract the attention of researchers because of its con-
siderable scientific and engineering importance.

As it is known, in a vertical rectangular slot differ-
ently heated from the side walls there are buoyancy
forces that result in the convective flow: the fluid rises
along the hot wall and comes down along the cold one.
When the slot is of infinite vertical extent that is quite
often assumed in theoretical considerations, the flow is
parallel. This is also true in the case of finite, but suffi-
ciently tall slot away from the top and bottom ends. In
this regime, vertical velocity profile is a cubic polyno-
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mial, the temperature distribution is linear and the heat
is transferred across the slot by conduction.

A lot of previous works of different authors have been
devoted to the study of the instabilities associated with
this conduction regime. It was shown that the type of
instability is determined by the magnitude of the Prandtl
number. The critical disturbance modes are hydrody-
namically driven and stationary when Pr < 12.45 (Bir-
ikh, 1966), but they are thermally driven and oscillatory
when Pr > 12.45 (Birikh et al., 1972; Korpela et al.,
1973). Non-linear analysis has shown that former dis-
turbances evolve into a pattern of steady transverse rolls
(Gershuni et al., 1968), and the latter ones cause the
convection in the form of two counter-propagating
waves, one of which travels up on the warm side of the
layer and another travels down on the cold side
(Gershuni et al., 1974). For a highly accurate determi-
nation of this important value of Pr see the paper of
Fujimura and Mizushima (1991).

One of the most interesting aspects of natural con-
vection is the occurrence of secondary, tertiary and
other supercritical motions in the process of the transi-
tion from laminar to turbulent fluid flow. The non-linear
evolution of instabilities of a plane-parallel flow of
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Nomenclature

phase velocity of wave
frequency of oscillations
acceleration due to gravity
Grashof number, gBOA* /v?
height of cavity
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wave number in i-direction
unit vector in x-direction
Nusselt number

pressure

Prandtl number, v/
generators of symmetry
time

temperature

temperature profile for base flow
velocity components
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Vi velocity profile for base flow
x,y,z  spatial coordinates

Ax mesh size

Greeks

y unit vector in vertical direction
4 aspect ratio, H/2h

e thermal diffusivity

A increment of instability

v kinematic viscosity

0 density

;i singular values

(2] temperature difference

14 stream function

P vorticity

low-Prandtl-number fluid in a differently heated vertical
layer was intensively studied both theoretically and ex-
perimentally, and seems to be well established (see, for
example, papers by Gershuni et al. (1968), Hart (1971),
Lee and Korpela (1983), Nagata and Busse (1983),
Clever and Busse (1995)).

In contrast with this, the situation regarding the
evolution of the traveling-wave structures, which occur
at Pr > 12.45, is not so satisfactory. One of the phe-
nomena that have been studied primarily from the ex-
perimental (Elder, 1965 (Pr = 1000); Seki et al., 1978
(Pr = 480); Chen and Wu, 1993 (Pr = 720); Wakitani,
1994 (Pr =900); Chen and Thangam, 1985 (Pr = 158—
720)), analytical (Korpela et al., 1973; Bergholz, 1978)
and numerical (Jin and Chen, 1996 (Pr = 158-720);
Christov and Homsy, 2001 (Pr = 1000)) point of view is a
pattern formation in high-Prandtl-number fluids. It is
important to notice however, that for so high values of
the Prandtl number as above, fluid inertia becomes in-
significant and only thermal inertia plays a role. It means
that the heat is rather convected than diffuses. This
causes an accumulation of heat in the upper part of the
slot and even onset of stationary secondary flow instead
of traveling waves (Elder, 1965; Bergholz, 1978). Thus, if
one intends to study the evolution of traveling waves
pattern, one should look at moderate-Prandtl-number
fluids. It was surprising for us, but we could find only a
few works in the literature sharing this point of view.

Let us discuss some difficulties arising at the experi-
mental study of a traveling-wave instability in the ver-
tical layer in more detail. It is evident that the developed
regime associated with such an instability can only be
observed in sufficiently tall slots. The estimate for slot’s
height can be obtained as follows. A characteristic time
required for development of disturbances may be writ-

ten as 1/, where 1 is a maximal value of increment
inside domain of instability (A may be calculated from
linear stability analysis). It is clear that this time must be
less than those of wave travel along the slot, which may
be written as H /c, where H is a height of slot and c is a
phase velocity of wave. In the dimensionless form we
obtain the following condition:
C

A L 1
>Gr02)v (1)

where Gr, denotes the critical value of the Grashof
number for the onset of instability, and 4 = H/2h is
aspect ratio (% is a half-depth of slot). It should be noted
that the critical Grashof number is function of the
Prandtl number: Gr, = Gr.(Pr). For example, for al-
cohol (Pr = 14) the estimate (1) gives unrealistically high
value 4 > 1000. This means that the secondary oscilla-
tory flow observed typically in alcohol are ““transitional”
in that sense that the traveling-wave disturbances in the
opposing flows have no time to grow up to a state of
interaction between them. This conclusion is corrobo-
rated by the results for the slot of alcohol obtained by
Kirdyashkin et al. (1971). Authors have observed the
secondary convective regime in the form of two series
of transverse rolls, one of which rises along the hot
wall and another comes down along the cold one.

On the other side, the theoretical assumption that a
layer has an infinite vertical extent implies evidently the
interaction between the opposing streams. In fact, the
numerical modeling of the two-dimensional convective
flows in an infinite layer performed by Gershuni et al.
(1974) for Pr = 16 has predicted the structure which is
quite different from those observed experimentally. Ac-
cording to their results, the flow pattern consists of
transverse rolls located between ascending and de-
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scending streams. Intensities of neighboring rolls pulsate
periodically in anti-phase. Such a disagreement between
theory and experiment is clearly due to the usage in
experiments of the cavities which do not satisfy (1). Note
that the condition (1) becomes less strict for fluids with
larger values of the Prandtl number. However, another
difficulty has then appeared. In order to reach a point of
instability of the conduction regime, an experimenter
needs to rise the temperature difference between side
walls up to the value
V2

O = Gry PR (2)
where v is the kinematic viscosity, f§ is the volumetric
coefficient of thermal expansion and g is the gravita-
tional acceleration. One can see that as the depth % is
decreased, the critical temperature difference increases.
By this reason one opts typically for the slots with #,
which is sufficient to obtain the primary instability of the
base flow: Pr =100, # =10 mm (Kirdyashkin et al.,
1971); Pr=1000, A = 10-50 mm (Elder, 1965); Pr =
480, h = 10 mm (Seki et al., 1978). But in a moderately
high cavity, when the Grashof number is increased, the
flow undergoes the transition to a boundary layer re-
gime before the conduction state becomes unstable with
respect to the oscillatory disturbances interesting for us
in the present paper. In these cases, a flow with steep
velocity and temperature gradients confined to bound-
ary layers on the vertical side walls and a core in the
center are usually observed. It is clear that in such a
situation the opposing streams do not interact again. As
the Prandtl number is increased, the heat advection in
such fluids becomes more effective in comparison with
thermal conduction, and the probability for boundary
layer regime to take place becomes higher.

So, in order to observe experimentally the interaction
and evolution of the traveling-wave disturbances in a
tall vertical slot, one needs to opt for the fluid with
moderate value of the Prandtl number, approximately
from the range 20 < Pr < 40. In order to satisfy this
requirement, we have used kerosene, Pr =26, as the
working fluid. Such a choice of fluid and the usage of
cavity satisfying (1) offer new opportunities for the
comparison of experimental data with results obtained
numerically for the layer of infinite extent.

Let us mention now the main difficulty met by re-
searchers when natural convection in moderate-Prandtl-
number fluid is studied numerically. Although the
problem of the linear stability of the base flow with re-
spect to the traveling-wave disturbances has been con-
sidered adequately (see, for example, papers by Birikh
et al. (1972) and Korpela et al. (1973)), the study of non-
linear evolution of even two-dimensional disturbances
has faced the following obstacle mentioned by Gershuni
et al. (1974) and Lee and Korpela (1983). The amplifi-
cation rate of disturbances inside of instability domain

was so small and the transition time to limiting oscilla-
tory regime was so long, that it was not possible to
provide the systematic investigation of bifurcations and
phase dynamics for the secondary and tertiary flows. As
far as we know to date, the works devoted to the three-
dimensional unsteady flows in a tall vertical slot are
practically absent.

Such an uncertainty concerning the evolution of the
traveling waves in the interacting opposing streams has
motivated the investigation presented in this paper. As
an example of such behavior, we explore both numeri-
cally and experimentally the transition from laminar to
irregular convection in the layer of kerosene (Pr = 26).
The paper is organized as follows: in Section 2 we for-
mulate the problem. The details of numerical scheme
and numerical results are presented in Section 3. Section
4 gives the details of experiment and experimental re-
sults. Having established the values of the Grashof
number for the principal bifurcations, we then discuss
the pattern formation in the system and provide the
comparison between theory and experiment in the
Section 5. Section 6 gives the summary.

2. Formulation

We will consider the motion of an incompressible
fluid enclosed between two parallel vertical walls that a
distance 24 apart. These walls are infinite in extent and
located in the planes x = —4 and x = h. We will use a
Cartesian system of coordinates with the origin on the
median plane of the layer, where the y-axis is taken to
point in the vertical direction, and the z-axis is hori-
zontal and parallel to the walls. We will assume that
there is a horizontal temperature difference of 2@ ap-
plied across the wall with the wall at x = —/ being the
hotter. This configuration is shown schematically in
Fig. 1. The flow in such a cavity is assumed to be gov-
erned by the Boussinesq form of the Navier—Stokes
equations, which are

g—l—v-Vv:—Vp—&—Av—l—GrTy,
or 1
a—t—&—V-VT—EAT, V.v=0, (3)

where 7y is the unit vector in y-direction. Eq. (3) have
been put into non-dimensional form by scaling length by
h, time by A2 /v, velocity by v/h, temperature by O, and
pressure by pv?/h?. In the above equations, there are
only two independent parameters that describe the flow.
These are

gpoen v

) Pr=-

Gr =
r \)2 Y

)

the Grashof number and the Prandtl number respec-
tively. In the present paper, the Prandtl number will be



838 D.A. Bratsun et al. | Int. J. Heat and Fluid Flow 24 (2003) 835-852

2h

T T,

Z

/|

Fig. 1. Geometrical configuration of the problem.

fixed to value Pr = 26 corresponding to kerosene. Thus,
the Grashof number is only parameter which governs
the flow evolution.

The boundary conditions for the velocities are the
non-slip conditions at the walls. The temperature has a
value 1 at the left wall and —1 at the right wall:

x==xl: v=0, T==FI (4)
In the y- and z-directions the periodicity conditions are

applied over a cell defined by the wave numbers &, and k.
respectively:

( 2n 2n >
V(xayazvt) =v(x,y+-—,z4+—,1],
k, k,

(5)
T(x )=T|x +2n —|—2nt

z,t) = —,z+—,1]).
7y7 ) 7y ky ) kZ )
The primary solution of Egs. (3) and (4) describing the

basic state of the system is given by
v : (0,v,,0),

1
v, = EGr(x3 —-x), T,=-x, (6)

and corresponds to the flow in the conduction regime.

3. Numerical simulation
3.1. The solution method

In order to perform a non-linear simulation of the
two-dimensional flows, we use a vorticity—stream func-
tion formulation of the governing equations (3). By in-
troducing the stream function

oy 0w

Uy =—, U, =
oy ’

~ o

the vorticity

_ Ov, Ou,

ox oy’

and eliminating the pressure, we can rewrite Eq. (3) in
the following form:

AY — —o,

o0 (@, V) or

= — AD h

o 3(x,y) +Gr ox’ @

or (¥, T) 1

o dxy) P

We solve this system of equations in the domain
-l <x<1, =H/2 <y < H/2 with the following con-
ditions on the boundaries:

vex: w0 -+,
Ox
y=xH/2: Y(x,—H/2,t)=Y(x,H/2,1),

T(x,—H/2,t) =T(x,H/2,t). ®
As the initial state we used the vorticity field charac-
terized by one or more one-vortex structures. In all cases
the numerical experiments have recovered the indepen-
dence of the final state on the initial condition.

The boundary value problem (7) and (8) was solved
by the finite-difference method. Equations and boundary
conditions were approximated on a uniform mesh using
a second order approximation for the spatial coordi-
nates. The non-linear equations were solved using an
explicit scheme on a rectangular uniform mesh 80 x 160
(for H = 4). To ensure the convergence of the numerical
scheme, the time step was calculated by the formula

sz

At =
2(2 + max(|'P], |9])’

where Ax is the mesh size. The Poisson equation was
solved by the iterative Liebman successive over-relax-
ation method in each time step: the accuracy of the so-
lution was fixed to 107*. The Kuskova and Chudov
formulas, providing the second order accuracy, were
used for approximation of the vorticities at the vertical
boundaries x = +1:

&(—1,y) = ﬁ(&”(—l +2Ax,y) — 8P (-1 + Ax,y)),

1

P(1,y) = 5 (F(1 = 2Ax,y) = 8¥(1 = Ax, y)).

To test of accuracy and convergence of our computer
program we have performed calculations of the thermal
convection in a square cavity heated from the side walls.
In all cases, it was found that our results agree with
corresponding numerical results reporting in the litera-
ture.
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For the numerical simulation of spatially periodic
three-dimensional flows, we have used the code
“NEKTON” (the computations were carried out on 8
node Intel-iPSC/860 of IMF (Marseille, France)) em-
ploying a spectral-clement method (Patera, 1984)
adapted for parallel implementation on multi-processor
computers by Fischer (1989). The spectral-element
method is a generalized variational scheme which ex-
ploits the rapid convergence rates of spectral methods
while retaining the geometric flexibility of the finite
element technique. It is based upon a macro-(spectral)
element discretization, where on each element the solu-
tion has a polynomial expansion of high degree. In the
code “NEKTON”, the Legendre polynomials are used
as basis functions. The method is thus characterized by
the discretization pair (K, N), where K is the number of
spectral elements and N is the order of polynomial ap-
proximations. In our calculations we used the number of
elements ranging from K =4 in the two-dimensional
case to K = 48 in the three-dimensional case. In all cases
the order of polynomials was fixed N = 7.

The time advancement scheme included the explicit
Adams-Bashforth treatment of the non-linear convec-
tive terms and implicit Uzawa procedure for the treat-
ment of viscous term. The Jacobi-preconditioned
conjugate-gradient iterative algorithm was used to re-
solve the system on each time step.

The calculations have been performed in a wide range
of the wave number k,: 0.4 <k, <1.1 for two-dimen-
sional flows and in the cell defined by k, = n/4, k. = /3
for three-dimensional flows. Pulsations of the velocity
and temperature have been recorded in the center of
(y,2)-plane in the point x = —0.59.

3.2. Time-dependent two-dimensional flows

In this section we present the numerical results for two-
dimensional flows assuming that each variable is a func-
tion of the x- and y-coordinates only and 8/0z = 0, v, = 0.

Stability boundaries for the different time-dependent
regimes of convection in the (k,, Gr)-parameter plane
are shown in Fig. 2, where the neutral stability curve for
the base flow is indicated by the solid line and the
boundaries corresponding to various secondary non-
linear convective patterns, are indicated by point-lines.
We have re-calculated the linear stability curve for
Pr = 26 using the procedure described in the monograph
by Gershuni and Zhukhovitskii (1976). The minimum of
neutral curve is located in the point kymi, = 0.94,
Grpin = 114.5. The line marked by open squares corre-
sponds to the appearance of time-periodic flow which
replaces the conduction state (6). As it can be seen from
Fig. 2, this curve is tangent to neutral stability curve
approximately in the point of minimum. The similar
result was obtained by Gershuni et al. (1974) for
Pr=20.

300

T
linear theory
periodic flow --&-
quasi-per.-2 flow ---m--
quasi-per.-3 flow ---o---

chaotic flow ----e---
3D simulations -------
250 f

.ié‘:“:“i»ﬁ"" B Al

Gr, Grashof number
N
o
o
T

150

100 L L il
0.4 0.6 0.8 1 1.2 14

k, wave number

Fig. 2. Diagram of stability for two-dimensional flows.

We found that as the Grashof number Gr is in-
creased, the system undegoes at least three Hopf bifur-
cations, starting from the stationary solution (6) to the
chaotical behavior.

Let us discuss in more detail, for example, the bi-
furcation sequence for the flow with the wave number
fixed to k, = n/4 (indicated in Fig. 2 by the vertical
dashed line). Some representative results including the
power spectra and Poincaré maps are shown in Fig.
3(a)—~(d) for Gr =220, 230, 248 and 250, respectively.
The Poincaré cross-section of the phase space con-
structed by v, v, and T recorded in one point has been
defined by the condition: v, = 0. In fact, the x compo-
nent of velocity characterizes the deviation of the sec-
ondary flow from plane-parallel one (6). We found that
the first Hopf bifurcation is supercritical and occurs at
about Gr = 124. The frequency of oscillations is found
to be practically a linear function of the Grashof num-
ber, and such a relationship does not depend on wave
number k,. Near the bifurcation point, the system os-
cillates with the frequency F; = 1.1. As the Grashof
number is increased to 220, the frequency also increases
to 1.42 (Fig. 3(a)).

The stream pattern replacing the base state is a
system of clockwise-rotating vortices, periodic in the
vertical direction, which stand between ascending and
descending flows (Fig. 4, left). Intensities of neighbor-
ing vortices are changed periodically in anti-phase. In
contrast with the standing pattern shown by stream-
lines, the temperature field is a pair of traveling waves,
one of which propagates along the hot wall upward and
another propagates along the cold wall downward
(Fig. 4, right). That is why this regime is called some-
times as “temperature waves”. It should be noted that
the similar structure has been obtained numerically by
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Fig. 3. The power spectra and Poincaré maps for two-dimensional time-dependent flows: (a) Gr = 220, periodic behavior; (b) Gr = 230, two-
frequency quasi-periodic behavior; (c) Gr = 248, three-frequency quasi-periodic behavior; (d) Gr = 250, chaotic behavior. The Poincaré cross-section

has been defined by the condition: v, = 0.

Gershuni et al. (1974) for Pr=20 and Chait and
Korpela (1989) for Pr = 1000.

We have found that an increase of Gr further leads to
sequential bifurcations: first, to the torus of dimension
two characterized by the two incommensurate frequen-
cies: F; =148, F, = 0.65 at Gr = 230 (Fig. 3(b)), and
then to the torus of dimension three with the frequen-
cies: F; =1.69, F, =0.61, F; =0.07 at Gr = 248 (Fig.
3(c)).

In our calculations we have obtained the solutions
with as many as four fundamental incommensurate
frequencies, and quite possible that there could exist the
oscillations characterized by even more frequencies, but,
due to the numerical difficulty mentioned in introduc-

tion, the registration and study of such quasi-periodic
solutions are not easy. For example, in order to obtain
the limit cycle at Gr = 130 one need to integrate the
system during about #,,m, ~ 70t, where 7 is the period of
oscillations. For the two-frequency quasi-periodic solu-
tion at Gr = 230 the integration takes already #,,, =~
6007. Finally, the three-frequency quasi-periodic state at
Gr = 248 demands as much time as #,u, ~ 28007!

It is interesting to note that the described transition
of the system through several quasi-periodic state can be
explained in the physical terms. The basic frequency F
is naturally associated with a speed of the temperature
waves arising due to the primary oscillatory instability.
As for other frequencies, which are usually a smaller



D.A. Bratsun et al. | Int. J. Heat and Fluid Flow 24 (2003) 835-852 841

(@) Y

(©

(b)

(d)

A

Fig. 4. Streamlines (left) and isotherms (right) for the oscillatory two-dimensional convective pattern (k, = m/4) are shown in the cycle of periodic
state at Gr = 150: (a) t = 0; (b) t = t/4; (c) t = t/2; (d) t = 37/4, where 7 is the period of oscillations.

value, its origin is not so evident. In our opinion, an
addition of new fundamental frequencies occurs due to a
modulation of the temperature waves. The analysis of
animation of pattern isotherms during the quasi-peri-
odic regime has shown that the process of new frequency
appearance takes place as follows. As the Grashof
number is increased, the amplitudes of opposing hot and
cold temperature waves grow up to moment when one

wave begins to overlap over another. We have found
that value of Gr, when it happens, corresponds ap-
proximately to the bifurcation to quasi-periodic solu-
tion. The explanation is quite simple. Due to the
different temperatures of waves, one wave slips over
another. This interaction gives rise to the additional
disturbances modulating the amplitude of each wave.
As we mentioned already, the relaxation time for the
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thermal disturbances in a high-Prandtl fluid is compar-
atively large, and thermal disturbances are convected by
flow rather than disappear due to conduction. This leads
to the appearance of the new fundamental frequency F,
and complicates flow pattern. Thus, this modulated state
may be characterized as two wave—the original tem-
perature wave and its modulation—traveling at inde-
pendent rates. We found that the frequencies F; and F,
do not lock as Gr varies, even when they pass through
small rational numbers. Further appearance of new in-
dependent frequencies may be explained in the similar
manner.

The curve marked in Fig. 2 by black circles indicates
the onset of chaotic oscillations in the system. We found
that the transition to chaos occurs via destruction of
a high-dimensional torus (dimension three, or even
more—depending on the wave number k,) and appear-
ance of a strange attractor. The power spectum and
Poincaré map for one of a such solution is shown in Fig.
3(d).

As it is known, a non-linear dynamical system with
chaotic behavior exhibit a number well established
routes to chaotic behavior. Starting with the pioneering
work of Ruelle and Takens (1971), a lot of effort has
been devoted to study transitions to chaos through
quasi-periodic motion. The most general transition of
this kind usually proceeds from two-frequency quasi-
periodic behavior to low-dimensional chaotic motion
through the interaction of resonances (mode-locking),
that lead to a corrugation of the torus, and ultimately to
a strange attractor. The very existence of three-dimen-
sional tori within this scenario appears unlikely in the
light of the Ruelle-Takens theorem. However, both
experiments and numerical studies give support to the
existence of these attractors insisting that in some cases
they can be structurally stable. For example, experi-
mentally three-frequency quasi-periodic motion has
been documented by Gollub and Benson (1980), and
four-frequency and five-frequency quasi-periodic mo-
tion by Walden et al. (1984). Some further light has been
shed on this topic after the work of Feudel et al. (1993),
who have presented convincing arguments on the sta-
bility of three-dimensional tori on systems with certain
types of symmetries, when the perturbations that affect
these attractors are not generic due to the symmetry of
the system. Two of the reported routes that involves a
3D-torus are:

2D-Torus — 3D-Torus — 2D-Torus — Chaos
(Feudel et al., 1993),

2D-Torus — 3D-Torus — High-dimensional chaos
(Pazé et al., 2001).

Thus, our results may be consistent with one of these
scenarios predicting that non-periodic motion should
occur after a small number of quasi-periodic bifurcations.

3.3. Time-dependent three-dimensional flows

As it is known from numerous experiments (Elder,
1965; Kirdyashkin et al., 1971; Seki et al., 1978), when
the Grashof number is increased, the convective flow in
vertical slot becomes unstable with respect to the three-
dimensional disturbances.

In order to study the flow pattern which arises as a
result of development of such disturbances, we have
performed the simulation of spatially periodic three-di-
mensional flows in a cell defined by —1<x <1,
—4 <y<4, =3 <z<3, which corresponds to wave
numbers k, = /4, k. = n/3.

In order to characterize a heat transfer in the cell, we
define the Nusselt number as the ratio of actual heat
transport across the layer to the heat transported only
by conduction, and average it over time:

Nuzl [n-VTdyd:z 7
T Jo Jn-VTdydz

where n is the unit vector in x-direction and 7 is suffi-
ciently long period of time.

First, let us discuss the situation in the range of the
Grashof number where two- and three-dimensional
flows compete against each other. Fig. 5(a) presents the
variation of the Nusselt number Nu versus the Grashof
number Gr. As it can be seen from figure, the two-
dimensional flows provide the maximal rate of heat
transfer across the layer in the range 124 < Gr < 133.
We have found that in this range of Gr, the three-di-
mensional disturbances being inserted in system leads
always to the two-dimensional solution. But if the
Grashof number exceeds the critical value, Gr = 133,
the transverse rolls (or the traveling waves if to refer to
the temperature field) shown in Fig. 4 become wavy
in the z-direction. The new flow provides maximal rate
of heat transfer for Gr > 133. The described picture is
supported by the comparison of the v, and v, compo-
nents of velocity as a function of the Grashof number Gr
shown in Fig. 5(b).

We found that as the Grashof number is increased
further in small steps, the transition of the three-
dimensional flow to chaotic behavior in time proceeds
through, first, the cycle pitchfork bifurcation which
breaks symmetry and gives rise to the periodic state at
Gr = 133, then the secondary Hopf bifurcation at about
Gr =~ 134, which leads to the quasi-periodic motion with
two independent frequencies, and ultimately to the
corrugation of the torus and the strange attractor at
Gr =~ 142. Some representative results including the
power spectra, Poincaré maps and time series for the
three-dimensional time-dependent flows are shown in
Fig. 6(a) and (b) for Gr = 135 and 150, respectively. The
Poincaré cross-section of the phase space (v.,v,,T) has
been defined by the condition: v, = 0. In fact, the z
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Fig. 5. Competition between the two-dimensional and three-dimen-
sional flows. (a) The heat transport across the layer with k, = n/4,
k. = n/3 averaged over time versus the Grashof number Gr. (b) The
maximal velocities v, and v, averaged over time versus the Grashof
number Gr.

component of velocity characterizes the deviation of the
flow from the two-dimensional one.

It should be noted that after the pitchfork bifurcation
at Gr = 133 there are two attractors (cycles, tori or
strange attractors) in the phase space of the system.
These attractors are symmetric with respect to the plane
v, =0 and may be obtained one from another by ap-
plying the transformation of symmetry. It is interesting
to point out that the plot of the power spectrum in Fig.
6(a) indicates the existence of sub-harmonic peaks that
implies the earlier sub-harmonic bifurcation of tori.

Variation of the principal frequency Fj, which is re-
lated with a speed of the temperature waves, with the
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Fig. 6. The power spectra, Poincaré maps and time series for time-
dependent three-dimensional flows: (a) Gr = 135, two-frequency quasi-
periodic behavior; (b) Gr =150, chaotic behavior. The Poincaré
cross-section has been defined by the condition: v, = 0.

Grashof number Gr is shown in Fig. 9, where line cor-
responding to three-dimensional regime of convection is
drawn in dashed style. Due to growing irregularity of
oscillations with an increase of Gr, the principal fre-
quency has been determined by maximum peak in the
corresponding power spectra. We see that in the vicinity
of bifurcation point, the results are close to those for
two-dimensional flows. But as the Grashof number Gr is
increased, the dashed line deviates more and more from
the solid one. Thus, the growth of the three-dimensional
effects in flow causes an increase of basic frequency of
oscillations. By other words, the temperature waves
move faster as the flow becomes more and more three-
dimensional.
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Thus, we see that the flow stays two-dimensional up
to Gr =133, but for higher values of the Grashof
number the consideration of three-dimensional flows
becomes necessary. It should be noted, that in contrast
to two-dimensional convection, the three-dimensional
flow undergoes the transition to temporal chaos at
smaller value of Gr. In fact, our numerical simula-
tions predict that the flow will remain regular (i.e. pe-
riodic or quasi-periodic) in the limited range of

parameter: 127 < Gr < 142. Similarly to the two-
dimensional case, the transition to chaos occurs via the
breakdown of quasi-periodic solution, but we have
documented only the torus with two independent fre-
quencies (Fig. 6(a)).

Let us discuss now the evolution of flow pattern.
Fig. 7(a)—(d) presents the lines of constant x-component
of velocity normal to the plane x = 0.1 in a some fixed
moment of time for Gr =130, 135, 150 and 300,

()

(d)

Fig. 7. Unsteady three-dimensional convection pattern. Lines of constant normal velocity, v, = const., in the plane x = 0.1 are shown in some fixed
moment of time: (a) Gr = 130; (b) Gr = 135; (c) Gr = 150; (d) Gr = 300. Each pattern drifts as a whole structure in the negative y-direction with the
constant phase velocity. Solid (dashed) lines indicate positive (negative) values. The solid line adjacent to the dashed ones indicates zero.
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Bifurcation values for main flow patterns
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Convective flow pattern

Linear stability analysis, Numerical results,

Experiment, Gr x 1072

Grx 1072 Grx 1072 4=50 4=15 SVD (4 = 75)
Pulsating transverse rolls 1.18 (for k, = 0.79) 1.24 (k, = 0.79) 1.1 1.2 -
1.15 (k, = 0.94) 1.15 (k, = 0.94)
Wavy pulsating - 1.33 (k, = 0.79) 1.25 1.4 1.3
transverse rolls
Cellular pattern - - 1.45 1.55 -
(broken rolls)
Modulated vertical rolls — - 1.6 1.7 1.7
respectively. The negative (positive) values of v, and v,
I

are indicated by the dashed (solid) lines. It should be
noted that each pattern shown in Fig. 7 drifts as a whole
structure in the negative y-direction with constant phase
velocity. This drift can be explained by the periodic
pulsation of the neighboring vortices in anti-phase. The
phase velocity of the drift is equal to zero only for the
plane x =0, but it becomes negative for any cross-
section x > 0 (in a colder part of the layer) and positive
for x < 0 (in a hotter part of the layer).

We see that the pattern shown in Fig. 7(a) for Gr = 130
corresponds to the two-dimensional transverse rolls (also
shown in x—y plane in Fig. 4). The next pattern (Fig. 7(b))
illustrates flow at Gr = 135, where the rolls have already
become wavy. As the Grashof number is increased further,
the three-dimensional effects strengthen, the rolls bend
more and more and, ultimately pull apart giving rise to the
cellular-like pattern (Fig. 7(c), Gr = 150). Sequentially, the
development of the latter flow pattern leads to the struc-
ture which we have called as “modulated vertical rolls
(streams)” (Fig. 7(d), Gr = 300). Its existence becomes
more evident after the observation of flow animation, only
one frame of which is shown in figure. We found that the
vertical streams are composed of the pieces of pulled apart
horizontal rolls. These pieces move in flow downward
(or upward) and coalesce into longitudinal rolls.

Thus, our analysis of flow evolution has revealed four
main patterns listed in Table 1. They are two-dimensional
transverse rolls pulsating in time, the same rolls becoming
wavy, the broken rolls (or cellular pattern) and the ver-
tical rolls modulated along axes. It is important to out-
line, that non-linear dynamics of flow in time becomes
irregular already for the wavy rolls and follows generally
the Ruelle-Takens’ route to the chaos. We will return to
the system pattern formation in more detail in Section 5,
where the comparison with experiment will be given.

4. Experiment

4.1. Apparatus and observation techniques

The convection cell, where flows were established, is a
rectangular cavity 300 mm high, 80 mm wide and of

Fig. 8. Schematic diagram of experimental setup.

variable depth (see Fig. 8, where it is indicated as 1). The
cavity is confined by two heat-exchangers, one of which
(2) consists of aluminum plates and another (3) is pre-
pared from Plexiglas. The temperature difference be-
tween the side walls can reach 20 °C allowing to study
the flow up to Gr = 400. It is maintained by pumping
water from two thermostatic units, 77 and 73, through
thermo-isolated tubes and heat-exchangers (2-3), and is
held constant to within +0.05 °C or better during one
experiment. The heat-exchangers are separated by nar-
row Plexiglas frame (4) of variable depth (4 or 6 mm).
Thus, the aspect ratio 4 defined in Section 1 takes on
values 75 or 50 respectively. These values of 4 are large
enough in order to observe in kerosene the convective
motions with a strong interaction of opposing flows. We
found that in the case of kerosene, the aspect ratio 4
should be more than 50 (see the condition (1)). As a
working fluid we have used kerosene with the following
set of the physical parameters: v =1.82 x 107® m?/s,
% =0.701 x 1077 m?/s, = 0.955 x 1073 1/K at 20 °C.
In order to perform the visual observations of flow
patterns both in the x—y and y—z planes, one of the
heat exchanger (2) was prepared from aluminum and
was coloured black from the fluid side. Another heat
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exchanger (3) and frame (4) were prepared from Plexi-
glas and was transparent. To visualize the flow, alumi-
num powder was suspended in the fluid. The aluminum
particles are disk-shaped and tend to lie with the plane
of the disk on the stream surface. This was a very helpful
point because the broad features of flows were imme-
diately apparent. Usage of aluminum powder allowed
both to observe the average properties of the flow and to
trace the passage of a single particle. The test experi-
ments have shown that an addition of particles to the
flow varies the critical value for onset of primary in-
stability within *3%. To discover the structure of flow
carrying the aluminum particles, two kinds of light
conditions were used: scattered light and the method of
so-called ““lighting knife” based on optical scheme with
laser beam. The entire setup was mounted on the stable
optical bench. Images of flows were acquired with a
digital video camera connected to a microcomputer.

Temperatures were measured with copper-constantan
thermocouples connected to a digital potentiometer (5)
with fluctuation within £0.03 °C. The temperature dif-
ference between the side walls was measured by a probe
(6) located halfway between the ends of the convection
cell. The vertical temperature gradient was carefully
controlled by a probe (7) with the thermocouple ends,
one of which was 250 mm distant from another, and
with 1.5 mm of the wires inserted into cavity. In all
experiments the horizontal temperature gradient was
about 10% as large as the vertical one, ensuring that a
secondary instability due to vertical temperature gradi-
ent could not occur.

In order to obtain the amplitude characteristics and
frequencies of oscillatory convection regimes, we used
constantan-manganin differential thermocouple (8), of
which one end of diameter 0.1 mm was inserted into the
flow in the middle part of the cavity at a distance of one
quarter of entire cell depth and another end was located
inside isothermal aluminum plate. The signal of this
thermocouple was reinforced by the amplifier (9) and
processed using a digital potentiometer (10) to digital
conversion circuitry and then recorded by microcom-
puter. This equipment made it possible to measure the
temperature pulsations better than +0.003 °C. The noise
level did not exceed 10~* °C. The maximal frequency of
oscillations which could be measured by this equipment
was 18 Hz.

Several basic techniques were employed to determine
the stability boundary of convection patterns. The first
technique was a direct observation by continuous
monitoring of space-time diagrams. The second tech-
nique was a derivation of the amplitude characteristics
of the flow for each fixed value of the Grashof number.
The thermocouple (8) connected to microcomputer
produced a signal, which represented the pulsation of
temperature field. The amplitude of these pulsations was
averaged over time, and sharp change of averaged am-

plitude was treated as a bifurcation point for new flow
pattern. In order to consider the dynamic features of the
system and to check the determined stability boundaries,
we performed also the technique of phase portrait re-
construction including the method of delays (Packard
et al., 1980) with preprocessing using the singular value
method proposed by Broomhead and King (1986). As it
is known, most observational data reflect just a few of
the many physical variables of a system and measure-
ments of all variables are rarely possible. However, this
difficulty can be overcome if the variables are non-lin-
early coupled, in which case the time-delay embedding
technique proposed by Packard et al. (1980) can be used
to reconstruct the phase or state space from the time
series data. In this technique a multi-dimensional
embedding space is constructed from the time series
data, and a point in it represents the state of the sys-
tem at a given time. The m-component state vector from
a time series x(¢) can be constructed as X; = {xi(¢#),
x2(8), - -, xm(8:)} where x;(4;) = x(¢; + (k — 1)7) and 7 is
an appropriate time delay. The reconstruction of the
phase space from the time series data can yield the dy-
namical features in the original system, as provided
by Takens’ theorem (Takens, 1981).

The phase space reconstructed by time-delay em-
bedding is noisy, and the singular spectrum analysis
(Broomhead and King, 1986) can be used to remove the
noise significantly. In this technique the m-dimensional
state vectors X; are used to construct a trajectory matrix
X whose rows are the N vectors X;’s. This N x m matrix
has all the dynamical features in the data and can be
used to obtain the number of linearly independent vec-
tors that describe the dynamics. The number of such
vectors is obtained from a singular spectrum analysis of
the m x m covariance matrix X'X. The number of
maximal eigenvalues o; (i=1,...m) of this matrix
(frequently called as “‘singular values™) gives an estimate
of the number of variables and the eigenvectors give the
directions of the variables in the embedded space. The
oscillations of the system in all other directions may be
treated as noise, and can be neglected. Thus, the use of
singular value decomposition (SVD) allows to calculate
an optimal basis for the projection of the reconstructed
phase dynamics of system and decreases an influence of
noise in experimental data. This technique permits an
upper limit of the embedding dimension of attractor. It
is evident that sharp change of attractor dimension,
which manifests itself in an increase of the number of the
singular values o; defining non-noisy phase space, with
an increase of some governing parameter indicate the
appearance of new convective state, i.e. system’s bifur-
cation.

The described experimental apparatus and methods
of observation and measurement allowed to define the
stability boundary for different convection pattern
within the error 10%. In this estimate we have taken into
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account possible influences of thermal inhomogeneity of
the boundaries (aluminum—Plexiglas), the vertical gra-
dient of temperature (existing because the slot is not
actually of infinite vertical dimension), the effect of de-
pendence of viscosity on the temperature and so on.

4.2. Experimental results

In this section we present the experimental results of
determination of parameter values for the principal bi-
furcations which occur in the system, by avoiding at the
moment the detailed discussion of the system pattern
formation.

The variation of amplitude of oscillations 4 with the
Grashof number Gr is shown in Fig. 9. The values of 4
have been averaged over time and non-dimensionalized
using half of temperature difference between side walls.
The black and open squares in the figure represent the
results obtained for layers with 4 = 50 and 75 respec-
tively. The squares at small values of Gr corresponds to
the base stationary flow, and small deviations of ex-
perimental data from zero can be explained by a noise
which always exists in system.

We have found that the secondary flow is periodic in
time and space and arises at about Gr = 1.1 x 10? for
A =50 and Gr = 1.2 x 10? for 4 = 75. The bifurcation
point has been determined by extrapolating the ampli-
tude curves up to the point of intersection with the axis
A = 0. The critical values of Gr derived by this way are
given in Table 1. When it was not possible to determine
the onset of new convection state from amplitude
characteristics we have obtained the critical values from
visual observations.

T T T T
0.00016 - h=3mm, experiment 0O b
h=2mm, experiment ]

0.00014

0.00012 |-

0.00010 |-

0.00008 |-
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0.00002 |-

8O 100 120 140 160 180 200
Gr, Grashof number

Fig. 9. The variation of dimensionless amplitude of oscillations aver-
aged over time with the Grashof number. Black and open squares
represent the results for 4 = 50 and 75 respectively.

The visual observations have shown that the sec-
ondary flow remains two-dimensional only for the
Grashof numbers slightly exceeding the point of the
onset of oscillations. As Gr is increased further, the new
pattern has been detected at about Gr = 1.25 x 10* for
A =50 and Gr= 1.4 x 10> for 4 =75. The flow be-
comes substantially three-dimensional that causes the
sharp growth of amplitude of oscillations (Fig. 9).

We found that the quaternary state of convection
arises at about Gr=1.45x10> for A4=50 and
Gr~15x10? for A =75. According to Fig. 9, the
points of bifurcation for this pattern cannot be deter-
mined so clear as before, but visual observations of flow
support these values.

The experiments have shown that at some conditions
flow may undergo one more transition. As the Grashof
number exceeds the value Gr = 1.6 x 10*> for 4 = 50
or Gr=1.7 x 10> for A4 =75, we fixed the appearance
of the longitudinal rolls (or streams) standing between
ascending and descending flows.

Variation of the frequency of oscillations non-
dimensionalized by using time unit 4?/v with the Gras-
hof number Gr is presented in Fig. 10. The black and
open squares indicate the results for layers with 4 = 50
and 75 respectively. Some representative results includ-
ing the power spectra and time series are shown in Fig.
11, where all values are given in the dimension units.
The numerical and experimental values of the basic
frequency in the dimensionless unit are listed in Table 2.

Fig. 12 presents the singular values spectrum (only
five maximal values normalized to the leading value are

4
2D sim‘ulations
3D simulations -------
35 | h=3mm, experiment = |
. h=2mm, experiment O
3 - -
g u " "u - "= L]
2 25} " 4
£ "
o -
[2]
© 2 [ L] 4
< - o
-~ o
L
05 | | | | |
120 140 160 180 200 220

Gr, Grashof number

Fig. 10. The variation of frequency of oscillations with the Grashof
number. Experimental results for 4 = 50 and 75 are indicated by the
black and open squares respectively. Solid and dashed lines indicate
the numerical results for two- and three-dimensional convection
respectively.
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Table 2
Values for the basic frequency F;
Gr Basic frequency F; in dimensionless units
2D flows 3D flows A =50 A="15
(num.) (num.) (exp.) (exp.)
130 1.11 1.11 2.23 1.18
135 1.19 1.19 2.31 1.34
150 1.24 1.24 2.57 1.39
190 1.34 1.42 2.72 1.61

shown) as a function of the Grashof number Gr for
A =75. A singular value, derived within SVD-method,
characterizes an intensity of phase motion in the corre-
sponding direction of the reconstructed phase space.
Thus, the number of values exceeding the level of noise
(indicated in Fig. 12 by horizontal line) gives the di-
mension of phase space. As it is seen from Fig. 12, the

embedding dimension of attractor becomes equal three
at Gr~ 1.3 x 10? that can be interpreted as transition
from periodic state to more complex behavior. Another
crisis of flow occurs at about Gr ~ 1.7 x 102, when the
dimension of phase space becomes equal four. It is in-
teresting to notice the qualitative similarity of the re-
constructed phase portrait (Fig. 13(a)) with the phase
dynamics of system obtained numerically (Fig. 13(b)).
Both results correspond to Gr = 135. The abscissa X,
and ordinate X, in Fig. 13(b) are by the singular eigen-
vectors giving non-noisy subspace in the embedded
space.

5. Flow patterns: simulations versus experiment

Let us discuss how our numerical simulations made for
the layer of infinite extent correlate with experimental
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observations. All the results which we obtained both nu-
merically and experimentally for the flow evolution are
listed in Table 1, where the numbers are the critical values
of the Grashof number for the onset of a new state, and
Table 2 with the values of the principal frequency Fj.
Let us consider in more detail the evolution of flow
patterns with the increase of the Grashof number. Note
that all photographs, which are discussed below, have
been made when the convection cell was illuminated in a
scattering light. Bright (dark) areas indicate predomi-
nantly the fluid motion parallel (transverse) to the side
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wall, when the aluminum particles being disk-shaped
reflect this light directly to an observer.

It is known from theory that when the Grashof
number is small enough, in the system there is a plane-
parallel flow, which is described by a cubic profile of
velocity and linear profile of temperature (6). Experi-
mental observation for this flow gives the picture,
characterizing the uniform distribution of the aluminum
particles over cavity (Fig. 14(a)). As it was mentioned
before, the theoretical analysis of the stability of a plain-
parallel flow with respect to infinitesimal disturbances
gives the critical value of the Grashof number Gr = 115
for the onset of oscillations (this corresponds to the
minimum of neutral curve in Fig. 2). This value is quite
close to those Gr=1.1x10*> (4=50) and Gr=
1.2 x 10? (4 = 75) obtained experimentally. And both
the theory (Fig. 7(a)) and experiment (Fig. 14(b),
Gr = 130) agree on defining the pattern of the secondary
flow: this is the system of the two-dimensional trans-
verse rolls standing between downward and upward
streams. The intensities of neighboring rolls pulsate
periodically in anti-phase. This standing wave is a result
of interference of two traveling waves one of which rises
and another comes down. The process of the periodic
excitation and damping of the transverse rolls could be
easily seen visually at an observation of convective
cavity from the ends. Such observation of flow through
the Plexiglas of heat-exchanger in the scattering light
gives the integral picture of the periodic system of bright
and dark horizontal stripes (Fig. 14(b)) moving down-
ward or upward depending on the observation plane
lying near the cold or hot wall respectively. The similar
picture was observed by animation of the velocity field
(Fig. 7(a)) obtained numerically.
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Fig. 13. The phase portrait of the system obtained numerically (a) and reconstructed from the experimental data for 4 = 75 (b). Both pictures

correspond to Gr = 135.
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Fig. 14. Photographs of flow patterns for 4 = 75: (a) Gr = 100, the plane-parallel flow; (b) Gr = 130, the traveling waves, the flow oscillates peri-
odically in time; (c) Gr = 145, the wavy traveling waves, the flow oscillates almost quasi-periodically; (d) Gr = 160, the cellular pattern, the time
dynamics is fully chaotic; (e) Gr = 190, the modulated vertical rolls and chaotic oscillations.

As the Grashof number is increased further, the sec-
ondary flow becomes unstable to the three-dimensional
disturbances. The critical value of Gr we obtained nu-
merically is Gr =133 (for a cell with wave numbers
ky, = n/4, k. = n/3). The critical values determined ex-
perimentally are Gr=1.25x 10> for 4 =50 and
Gr = 1.4 x 10 for 4 = 75. Both in the numerical sim-
ulation (Fig. 7(b), Gr = 135) and in the experiment (Fig.

14(c), Gr = 145) the instability giving rise to tertiary
flow is a wavy instability. It means that the roll pattern
becomes wavy in the horizontal direction. The heat ex-
change between cold and hot streams in the flow in-
tensifies and results in the growth of amplitude of
oscillations and the Nusselt number.

Further increase of the Grashof number Gr leads to
more influence of the three-dimensional effects on flow
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pattern causing the wavy rolls to be pulled apart. This
produces the cellular-like pattern shown in Fig. 7(c)
(Gr = 150) and Fig. 14(d) (Gr = 160).

The most intriguing flow pattern forms at about
Gr=1.6x 10> (4=150) or Gr=1.7x 10> (4=175). A
typical photograph of such a flow is shown in Fig. 14(e) for
Gr = 190. Due to numerical complexity we could not
determine the onset of this flow numerically, but observed
a similar structure at Gr = 200 and larger values of Gr
(Fig. 7(d), Gr = 300). We found that evolution of the
broken rolls leads to the vertical rolls. There are two series
of such structure: one standing in ascending flow and
another in descending flow. These vertical rolls are not
uniform along their axes: the modulation waves
travel along them downward in cold flow and upward in
hot flow such a way that the fluid elements move on a
spiral path.

The comparative analysis of the data obtained nu-
merically and experimentally has shown that there exists
qualitative and sometimes even quantitative agreement.
It is important to note, that for higher values of the
Grashof number the agreement becomes solely qualita-
tive. In our opinion, the problem geometry used in nu-
merical simulations is the main reason for that. It is
evident that the theoretical assumption of an infinity of
the layer, which permits to consider spatially periodic
flows, is a model simplifying the analysis. On the other
hand, the experimental setup has a limited vertical ex-
tent and consequently finite aspect ratio. In order to
permit to the oscillatory disturbances in the opposing
streams to grow up to interaction between them, one
needs to have the experimental slot sufficiently long.
This allows to compare experimental results with those
for infinite layer, where such an interaction is assumed
a priori. As we noticed in Section 1, the choice of
a working fluid is limited to the range 20 < Pr<40. In
our experiments we used the kerosene Pr = 26 which
applies the condition 4 > 50 on the height of the slot.
By analyzing the experimental data listed in Tables 1 and
2, one can conclude that the aspect ratio of cavity has
strong influence on the flow, but as the 4 is increased, the
results tend to approximate those obtained numerically
for infinite layer. Thus, if the cavity with 4 = 50 gives
the frequency of oscillations twice as great as theoreti-
cal value, then the cavity with 4 =75 gives the value
which is close to the theoretical one (Fig. 9).

6. Summary

Non-linear dynamics and pattern formation of the
thermal convection in a tall vertical slot differently hea-
ted from the side walls were studied both numerically
and experimentally. The kerosene have been chosen as a
working fluid, because its Prandtl number Pr = 26 is

large enough to ensure an onset of traveling waves
as primary instability and small enough to prevent an
occurrence of boundary layer convection.

In the numerical simulation we have accepted an
approximation of infinite layer. The finite-difference and
spectral-element methods have been applied to study
two- and three-dimensional flows respectively.

In the part of the experimental study, we have used the
convection cells with aspect ratio 50 and 75. The stability
boundaries have been determined on the base of visual
observations, reprocessing of local values of temperature
field recorded from the several thermocouples, analysis of
the power spectra and amplitude characteristics of oscil-
lations.

We have found that the transition from a plain-par-
allel cubic profile flow to the convection motions, which
are chaotic in time, occurs after a small number of
quasi-periodic bifurcations, final destruction of high-
dimensional torus (dimension three or four) and ap-
pearance of strange attractor. The evolution of flow
pattern to space irregularity includes the following se-
quence of events. In the beginning the plane-parallel
flow becomes unstable to pulsating transverse rolls lo-
cated between ascending and descending flows. As the
Grashof number increases, these rolls become wavy and
eventually are pulled apart giving rise to cellular-like
pattern. Finally, the system evolves to the longitudinal
rolls chaotically modulated along their axes.

Thus, the special choice of a working fluid and the
taking into account several factors has made it possible
for the first time to follow the evolution of the traveling-
wave instability with the Grashof number up to values of
Gr twice as high as the value of oscillations onset. The
comparison of the experimental data with the numerical
results for infinite layer has shown a satisfactory agree-
ment between them.
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