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Abstract

We study both experimentally and numerically the convective flow in a tall vertical slot with differently heated walls. The flow is

investigated for the fluid with the Prandtl number Pr ¼ 26, which is large enough to ensure the traveling waves as primary instability

and small enough to prevent boundary layer convection. The flow evolution is determined on the base of the visual observations,

power spectra and amplitude analysis. In the numerical simulations of two- and three-dimensional flows, we accept an assumption

of an infinite fluid layer. The satisfactory agreement with experiment is observed, and the sequence of convection states is discovered.

It starts with a plane-parallel flow as primary solution, which becomes unstable to two counter-propagating waves. It is followed by

a tertiary three-dimensional flow in the form of wavy traveling waves. As the Grashof number is increased even further, a chaotically

oscillating cellular pattern consisting of the pieces of broken waves arises. The formation of a structure in the form of the vertical

rolls chaotically modulated along axes concludes this complicated picture.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Since pioneering works by Gershuni (1953) and

Batchelor (1954) the problem which deals with the nat-

ural convection in a slot with a fixed temperature dif-

ference between the vertical side walls continues to

attract the attention of researchers because of its con-
siderable scientific and engineering importance.

As it is known, in a vertical rectangular slot differ-

ently heated from the side walls there are buoyancy

forces that result in the convective flow: the fluid rises

along the hot wall and comes down along the cold one.

When the slot is of infinite vertical extent that is quite

often assumed in theoretical considerations, the flow is

parallel. This is also true in the case of finite, but suffi-
ciently tall slot away from the top and bottom ends. In

this regime, vertical velocity profile is a cubic polyno-
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mial, the temperature distribution is linear and the heat

is transferred across the slot by conduction.

A lot of previous works of different authors have been

devoted to the study of the instabilities associated with

this conduction regime. It was shown that the type of

instability is determined by the magnitude of the Prandtl

number. The critical disturbance modes are hydrody-
namically driven and stationary when Pr < 12:45 (Bir-

ikh, 1966), but they are thermally driven and oscillatory

when Pr > 12:45 (Birikh et al., 1972; Korpela et al.,

1973). Non-linear analysis has shown that former dis-

turbances evolve into a pattern of steady transverse rolls

(Gershuni et al., 1968), and the latter ones cause the

convection in the form of two counter-propagating

waves, one of which travels up on the warm side of the
layer and another travels down on the cold side

(Gershuni et al., 1974). For a highly accurate determi-

nation of this important value of Pr see the paper of

Fujimura and Mizushima (1991).

One of the most interesting aspects of natural con-

vection is the occurrence of secondary, tertiary and

other supercritical motions in the process of the transi-

tion from laminar to turbulent fluid flow. The non-linear
evolution of instabilities of a plane-parallel flow of
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Nomenclature

c phase velocity of wave

F frequency of oscillations

g acceleration due to gravity

Gr Grashof number, gbHh3=m2

H height of cavity

h half-depth of cavity

ki wave number in i-direction
n unit vector in x-direction
Nu Nusselt number

p pressure

Pr Prandtl number, m=v
Si generators of symmetry

t time

T temperature

Tb temperature profile for base flow

vi velocity components

vb velocity profile for base flow

x; y; z spatial coordinates

Dx mesh size

Greeks

c unit vector in vertical direction

D aspect ratio, H=2h
v thermal diffusivity

k increment of instability
m kinematic viscosity

q density

ri singular values

H temperature difference

W stream function

U vorticity
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low-Prandtl-number fluid in a differently heated vertical

layer was intensively studied both theoretically and ex-

perimentally, and seems to be well established (see, for

example, papers by Gershuni et al. (1968), Hart (1971),

Lee and Korpela (1983), Nagata and Busse (1983),

Clever and Busse (1995)).

In contrast with this, the situation regarding the

evolution of the traveling-wave structures, which occur
at Pr > 12:45, is not so satisfactory. One of the phe-

nomena that have been studied primarily from the ex-

perimental (Elder, 1965 (Pr ¼ 1000); Seki et al., 1978

(Pr ¼ 480); Chen and Wu, 1993 (Pr ¼ 720); Wakitani,

1994 (Pr ¼ 900); Chen and Thangam, 1985 (Pr ¼ 158–

720)), analytical (Korpela et al., 1973; Bergholz, 1978)

and numerical (Jin and Chen, 1996 (Pr ¼ 158–720);

Christov and Homsy, 2001 (Pr ¼ 1000)) point of view is a
pattern formation in high-Prandtl-number fluids. It is

important to notice however, that for so high values of

the Prandtl number as above, fluid inertia becomes in-

significant and only thermal inertia plays a role. It means

that the heat is rather convected than diffuses. This

causes an accumulation of heat in the upper part of the

slot and even onset of stationary secondary flow instead

of traveling waves (Elder, 1965; Bergholz, 1978). Thus, if
one intends to study the evolution of traveling waves

pattern, one should look at moderate-Prandtl-number

fluids. It was surprising for us, but we could find only a

few works in the literature sharing this point of view.

Let us discuss some difficulties arising at the experi-

mental study of a traveling-wave instability in the ver-

tical layer in more detail. It is evident that the developed

regime associated with such an instability can only be
observed in sufficiently tall slots. The estimate for slot�s
height can be obtained as follows. A characteristic time

required for development of disturbances may be writ-
ten as 1=k, where k is a maximal value of increment

inside domain of instability (k may be calculated from

linear stability analysis). It is clear that this time must be

less than those of wave travel along the slot, which may

be written as H=c, where H is a height of slot and c is a

phase velocity of wave. In the dimensionless form we

obtain the following condition:

D > Grcr
c
2k

; ð1Þ

where Grcr denotes the critical value of the Grashof

number for the onset of instability, and D ¼ H=2h is

aspect ratio (h is a half-depth of slot). It should be noted

that the critical Grashof number is function of the

Prandtl number: Grcr ¼ GrcrðPrÞ. For example, for al-
cohol (Pr ¼ 14) the estimate (1) gives unrealistically high

value D > 1000. This means that the secondary oscilla-

tory flow observed typically in alcohol are ‘‘transitional’’

in that sense that the traveling-wave disturbances in the

opposing flows have no time to grow up to a state of

interaction between them. This conclusion is corrobo-

rated by the results for the slot of alcohol obtained by

Kirdyashkin et al. (1971). Authors have observed the
secondary convective regime in the form of two series

of transverse rolls, one of which rises along the hot

wall and another comes down along the cold one.

On the other side, the theoretical assumption that a

layer has an infinite vertical extent implies evidently the

interaction between the opposing streams. In fact, the

numerical modeling of the two-dimensional convective

flows in an infinite layer performed by Gershuni et al.
(1974) for Pr ¼ 16 has predicted the structure which is

quite different from those observed experimentally. Ac-

cording to their results, the flow pattern consists of

transverse rolls located between ascending and de-
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scending streams. Intensities of neighboring rolls pulsate

periodically in anti-phase. Such a disagreement between

theory and experiment is clearly due to the usage in

experiments of the cavities which do not satisfy (1). Note
that the condition (1) becomes less strict for fluids with

larger values of the Prandtl number. However, another

difficulty has then appeared. In order to reach a point of

instability of the conduction regime, an experimenter

needs to rise the temperature difference between side

walls up to the value

H ¼ Grcr
m2

gbh3
; ð2Þ

where m is the kinematic viscosity, b is the volumetric

coefficient of thermal expansion and g is the gravita-

tional acceleration. One can see that as the depth h is
decreased, the critical temperature difference increases.

By this reason one opts typically for the slots with h,
which is sufficient to obtain the primary instability of the

base flow: Pr ¼ 100, h ¼ 10 mm (Kirdyashkin et al.,

1971); Pr ¼ 1000, h ¼ 10–50 mm (Elder, 1965); Pr ¼
480, h ¼ 10 mm (Seki et al., 1978). But in a moderately

high cavity, when the Grashof number is increased, the

flow undergoes the transition to a boundary layer re-
gime before the conduction state becomes unstable with

respect to the oscillatory disturbances interesting for us

in the present paper. In these cases, a flow with steep

velocity and temperature gradients confined to bound-

ary layers on the vertical side walls and a core in the

center are usually observed. It is clear that in such a

situation the opposing streams do not interact again. As

the Prandtl number is increased, the heat advection in
such fluids becomes more effective in comparison with

thermal conduction, and the probability for boundary

layer regime to take place becomes higher.

So, in order to observe experimentally the interaction

and evolution of the traveling-wave disturbances in a

tall vertical slot, one needs to opt for the fluid with

moderate value of the Prandtl number, approximately

from the range 20 < Pr < 40. In order to satisfy this
requirement, we have used kerosene, Pr ¼ 26, as the

working fluid. Such a choice of fluid and the usage of

cavity satisfying (1) offer new opportunities for the

comparison of experimental data with results obtained

numerically for the layer of infinite extent.

Let us mention now the main difficulty met by re-

searchers when natural convection in moderate-Prandtl-

number fluid is studied numerically. Although the
problem of the linear stability of the base flow with re-

spect to the traveling-wave disturbances has been con-

sidered adequately (see, for example, papers by Birikh

et al. (1972) and Korpela et al. (1973)), the study of non-

linear evolution of even two-dimensional disturbances

has faced the following obstacle mentioned by Gershuni

et al. (1974) and Lee and Korpela (1983). The amplifi-

cation rate of disturbances inside of instability domain
was so small and the transition time to limiting oscilla-

tory regime was so long, that it was not possible to

provide the systematic investigation of bifurcations and

phase dynamics for the secondary and tertiary flows. As
far as we know to date, the works devoted to the three-

dimensional unsteady flows in a tall vertical slot are

practically absent.

Such an uncertainty concerning the evolution of the

traveling waves in the interacting opposing streams has

motivated the investigation presented in this paper. As

an example of such behavior, we explore both numeri-

cally and experimentally the transition from laminar to
irregular convection in the layer of kerosene (Pr ¼ 26).

The paper is organized as follows: in Section 2 we for-

mulate the problem. The details of numerical scheme

and numerical results are presented in Section 3. Section

4 gives the details of experiment and experimental re-

sults. Having established the values of the Grashof

number for the principal bifurcations, we then discuss

the pattern formation in the system and provide the
comparison between theory and experiment in the

Section 5. Section 6 gives the summary.
2. Formulation

We will consider the motion of an incompressible

fluid enclosed between two parallel vertical walls that a
distance 2h apart. These walls are infinite in extent and

located in the planes x ¼ �h and x ¼ h. We will use a

Cartesian system of coordinates with the origin on the

median plane of the layer, where the y-axis is taken to

point in the vertical direction, and the z-axis is hori-

zontal and parallel to the walls. We will assume that

there is a horizontal temperature difference of 2H ap-

plied across the wall with the wall at x ¼ �h being the
hotter. This configuration is shown schematically in

Fig. 1. The flow in such a cavity is assumed to be gov-

erned by the Boussinesq form of the Navier–Stokes

equations, which are

ov

ot
þ v � rv ¼ �rp þ Dvþ GrT c;

oT
ot

þ v � rT ¼ 1

Pr
DT ; r � v ¼ 0; ð3Þ

where c is the unit vector in y-direction. Eq. (3) have

been put into non-dimensional form by scaling length by

h, time by h2=m, velocity by m=h, temperature by H, and

pressure by qm2=h2. In the above equations, there are

only two independent parameters that describe the flow.

These are

Gr ¼ gbHh3

m2
; Pr ¼ m

v
;

the Grashof number and the Prandtl number respec-

tively. In the present paper, the Prandtl number will be
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Fig. 1. Geometrical configuration of the problem.
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fixed to value Pr ¼ 26 corresponding to kerosene. Thus,

the Grashof number is only parameter which governs

the flow evolution.
The boundary conditions for the velocities are the

non-slip conditions at the walls. The temperature has a

value 1 at the left wall and )1 at the right wall:

x ¼ �1 : v ¼ 0; T ¼ �1: ð4Þ
In the y- and z-directions the periodicity conditions are

applied over a cell defined by the wave numbers ky and kz
respectively:

vðx; y; z; tÞ ¼ v x; y
�

þ 2p
ky

; zþ 2p
kz

; t
�
;

T ðx; y; z; tÞ ¼ T x; y
�

þ 2p
ky

; zþ 2p
kz

; t
�
:

ð5Þ

The primary solution of Eqs. (3) and (4) describing the

basic state of the system is given by

vb : ð0; vy ; 0Þ; vy ¼
1

6
Grðx3 � xÞ; Tb ¼ �x; ð6Þ

and corresponds to the flow in the conduction regime.
3. Numerical simulation

3.1. The solution method

In order to perform a non-linear simulation of the

two-dimensional flows, we use a vorticity–stream func-

tion formulation of the governing equations (3). By in-

troducing the stream function

vx ¼
oW
oy

; vy ¼ � oW
ox

;

the vorticity

U ¼ ovy
ox

� ovx
oy

;

and eliminating the pressure, we can rewrite Eq. (3) in

the following form:

DW ¼ �U;

oU
ot

þ oðU;WÞ
oðx; yÞ ¼ DUþ Gr

oT
ox

; ð7Þ

oT
ot

þ oðW; T Þ
oðx; yÞ ¼ 1

Pr
DT :

We solve this system of equations in the domain

�1 < x < 1, �H=2 < y < H=2 with the following con-

ditions on the boundaries:

x ¼ �1 : W ¼ oW
ox

¼ 0; T ¼ �1;

y ¼ �H=2 : Wðx;�H=2; tÞ ¼ Wðx;H=2; tÞ;
T ðx;�H=2; tÞ ¼ T ðx;H=2; tÞ:

ð8Þ

As the initial state we used the vorticity field charac-

terized by one or more one-vortex structures. In all cases

the numerical experiments have recovered the indepen-

dence of the final state on the initial condition.

The boundary value problem (7) and (8) was solved
by the finite-difference method. Equations and boundary

conditions were approximated on a uniform mesh using

a second order approximation for the spatial coordi-

nates. The non-linear equations were solved using an

explicit scheme on a rectangular uniform mesh 80� 160

(for H ¼ 4). To ensure the convergence of the numerical

scheme, the time step was calculated by the formula

Dt ¼ Dx2

2ð2þmaxðjWj; jUjÞÞ ;

where Dx is the mesh size. The Poisson equation was

solved by the iterative Liebman successive over-relax-

ation method in each time step: the accuracy of the so-

lution was fixed to 10�4. The Kuskova and Chudov

formulas, providing the second order accuracy, were

used for approximation of the vorticities at the vertical

boundaries x ¼ �1:

Uð�1; yÞ ¼ 1

2Dx
ðWð�1þ 2Dx; yÞ � 8Wð�1þ Dx; yÞÞ;

Uð1; yÞ ¼ 1

2Dx
ðWð1� 2Dx; yÞ � 8Wð1� Dx; yÞÞ:

To test of accuracy and convergence of our computer

program we have performed calculations of the thermal

convection in a square cavity heated from the side walls.

In all cases, it was found that our results agree with

corresponding numerical results reporting in the litera-
ture.
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For the numerical simulation of spatially periodic

three-dimensional flows, we have used the code

‘‘NEKTON’’ (the computations were carried out on 8

node Intel-iPSC/860 of IMF (Marseille, France)) em-
ploying a spectral-element method (Patera, 1984)

adapted for parallel implementation on multi-processor

computers by Fischer (1989). The spectral-element

method is a generalized variational scheme which ex-

ploits the rapid convergence rates of spectral methods

while retaining the geometric flexibility of the finite

element technique. It is based upon a macro-(spectral)

element discretization, where on each element the solu-
tion has a polynomial expansion of high degree. In the

code ‘‘NEKTON’’, the Legendre polynomials are used

as basis functions. The method is thus characterized by

the discretization pair ðK;NÞ, where K is the number of

spectral elements and N is the order of polynomial ap-

proximations. In our calculations we used the number of

elements ranging from K ¼ 4 in the two-dimensional

case to K ¼ 48 in the three-dimensional case. In all cases
the order of polynomials was fixed N ¼ 7.

The time advancement scheme included the explicit

Adams-Bashforth treatment of the non-linear convec-

tive terms and implicit Uzawa procedure for the treat-

ment of viscous term. The Jacobi-preconditioned

conjugate-gradient iterative algorithm was used to re-

solve the system on each time step.

The calculations have been performed in a wide range
of the wave number ky : 0:46 ky 6 1:1 for two-dimen-

sional flows and in the cell defined by ky ¼ p=4, kz ¼ p=3
for three-dimensional flows. Pulsations of the velocity

and temperature have been recorded in the center of

ðy; zÞ-plane in the point x ¼ �0:59.

3.2. Time-dependent two-dimensional flows

In this section we present the numerical results for two-

dimensional flows assuming that each variable is a func-

tion of the x- and y-coordinates only and o=oz ¼ 0, vz ¼ 0.

Stability boundaries for the different time-dependent

regimes of convection in the ðky ;GrÞ-parameter plane

are shown in Fig. 2, where the neutral stability curve for
the base flow is indicated by the solid line and the

boundaries corresponding to various secondary non-

linear convective patterns, are indicated by point-lines.

We have re-calculated the linear stability curve for

Pr ¼ 26 using the procedure described in the monograph

by Gershuni and Zhukhovitskii (1976). The minimum of

neutral curve is located in the point kymin ¼ 0:94,
Grmin ¼ 114:5. The line marked by open squares corre-
sponds to the appearance of time-periodic flow which

replaces the conduction state (6). As it can be seen from

Fig. 2, this curve is tangent to neutral stability curve

approximately in the point of minimum. The similar

result was obtained by Gershuni et al. (1974) for

Pr ¼ 20.
We found that as the Grashof number Gr is in-
creased, the system undegoes at least three Hopf bifur-

cations, starting from the stationary solution (6) to the

chaotical behavior.

Let us discuss in more detail, for example, the bi-

furcation sequence for the flow with the wave number

fixed to ky ¼ p=4 (indicated in Fig. 2 by the vertical

dashed line). Some representative results including the

power spectra and Poincar�ee maps are shown in Fig.
3(a)–(d) for Gr ¼ 220, 230, 248 and 250, respectively.

The Poincar�ee cross-section of the phase space con-

structed by vx, vy and T recorded in one point has been

defined by the condition: vx ¼ 0. In fact, the x compo-

nent of velocity characterizes the deviation of the sec-

ondary flow from plane-parallel one (6). We found that

the first Hopf bifurcation is supercritical and occurs at

about Gr ¼ 124. The frequency of oscillations is found
to be practically a linear function of the Grashof num-

ber, and such a relationship does not depend on wave

number ky . Near the bifurcation point, the system os-

cillates with the frequency F1 ¼ 1:1. As the Grashof

number is increased to 220, the frequency also increases

to 1.42 (Fig. 3(a)).

The stream pattern replacing the base state is a

system of clockwise-rotating vortices, periodic in the
vertical direction, which stand between ascending and

descending flows (Fig. 4, left). Intensities of neighbor-

ing vortices are changed periodically in anti-phase. In

contrast with the standing pattern shown by stream-

lines, the temperature field is a pair of traveling waves,

one of which propagates along the hot wall upward and

another propagates along the cold wall downward

(Fig. 4, right). That is why this regime is called some-
times as ‘‘temperature waves’’. It should be noted that

the similar structure has been obtained numerically by
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Gershuni et al. (1974) for Pr ¼ 20 and Chait and

Korpela (1989) for Pr ¼ 1000.

We have found that an increase of Gr further leads to
sequential bifurcations: first, to the torus of dimension
two characterized by the two incommensurate frequen-

cies: F1 ¼ 1:48, F2 ¼ 0:65 at Gr ¼ 230 (Fig. 3(b)), and

then to the torus of dimension three with the frequen-

cies: F1 ¼ 1:69, F2 ¼ 0:61, F3 ¼ 0:07 at Gr ¼ 248 (Fig.

3(c)).

In our calculations we have obtained the solutions

with as many as four fundamental incommensurate

frequencies, and quite possible that there could exist the
oscillations characterized by even more frequencies, but,

due to the numerical difficulty mentioned in introduc-
tion, the registration and study of such quasi-periodic

solutions are not easy. For example, in order to obtain

the limit cycle at Gr ¼ 130 one need to integrate the

system during about tnum � 70s, where s is the period of
oscillations. For the two-frequency quasi-periodic solu-

tion at Gr ¼ 230 the integration takes already tnum �
600s. Finally, the three-frequency quasi-periodic state at

Gr ¼ 248 demands as much time as tnum � 2800s!
It is interesting to note that the described transition

of the system through several quasi-periodic state can be

explained in the physical terms. The basic frequency F1
is naturally associated with a speed of the temperature
waves arising due to the primary oscillatory instability.

As for other frequencies, which are usually a smaller



Fig. 4. Streamlines (left) and isotherms (right) for the oscillatory two-dimensional convective pattern (ky ¼ p=4) are shown in the cycle of periodic

state at Gr ¼ 150: (a) t ¼ 0; (b) t ¼ s=4; (c) t ¼ s=2; (d) t ¼ 3s=4, where s is the period of oscillations.
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value, its origin is not so evident. In our opinion, an

addition of new fundamental frequencies occurs due to a

modulation of the temperature waves. The analysis of

animation of pattern isotherms during the quasi-peri-

odic regime has shown that the process of new frequency

appearance takes place as follows. As the Grashof

number is increased, the amplitudes of opposing hot and

cold temperature waves grow up to moment when one
wave begins to overlap over another. We have found

that value of Gr, when it happens, corresponds ap-

proximately to the bifurcation to quasi-periodic solu-

tion. The explanation is quite simple. Due to the

different temperatures of waves, one wave slips over

another. This interaction gives rise to the additional

disturbances modulating the amplitude of each wave.

As we mentioned already, the relaxation time for the
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thermal disturbances in a high-Prandtl fluid is compar-

atively large, and thermal disturbances are convected by

flow rather than disappear due to conduction. This leads

to the appearance of the new fundamental frequency F2
and complicates flow pattern. Thus, this modulated state

may be characterized as two wave––the original tem-

perature wave and its modulation––traveling at inde-

pendent rates. We found that the frequencies F1 and F2
do not lock as Gr varies, even when they pass through

small rational numbers. Further appearance of new in-

dependent frequencies may be explained in the similar

manner.
The curve marked in Fig. 2 by black circles indicates

the onset of chaotic oscillations in the system. We found

that the transition to chaos occurs via destruction of

a high-dimensional torus (dimension three, or even

more––depending on the wave number ky) and appear-

ance of a strange attractor. The power spectum and

Poincar�ee map for one of a such solution is shown in Fig.

3(d).
As it is known, a non-linear dynamical system with

chaotic behavior exhibit a number well established

routes to chaotic behavior. Starting with the pioneering

work of Ruelle and Takens (1971), a lot of effort has

been devoted to study transitions to chaos through

quasi-periodic motion. The most general transition of

this kind usually proceeds from two-frequency quasi-

periodic behavior to low-dimensional chaotic motion
through the interaction of resonances (mode-locking),

that lead to a corrugation of the torus, and ultimately to

a strange attractor. The very existence of three-dimen-

sional tori within this scenario appears unlikely in the

light of the Ruelle–Takens theorem. However, both

experiments and numerical studies give support to the

existence of these attractors insisting that in some cases

they can be structurally stable. For example, experi-
mentally three-frequency quasi-periodic motion has

been documented by Gollub and Benson (1980), and

four-frequency and five-frequency quasi-periodic mo-

tion by Walden et al. (1984). Some further light has been

shed on this topic after the work of Feudel et al. (1993),

who have presented convincing arguments on the sta-

bility of three-dimensional tori on systems with certain

types of symmetries, when the perturbations that affect
these attractors are not generic due to the symmetry of

the system. Two of the reported routes that involves a

3D-torus are:

2D-Torus! 3D-Torus! 2D-Torus!Chaos

(Feudel et al., 1993),

2D-Torus! 3D-Torus!High-dimensional chaos

(Paz�oo et al., 2001).

Thus, our results may be consistent with one of these

scenarios predicting that non-periodic motion should

occur after a small number of quasi-periodic bifurcations.
3.3. Time-dependent three-dimensional flows

As it is known from numerous experiments (Elder,

1965; Kirdyashkin et al., 1971; Seki et al., 1978), when
the Grashof number is increased, the convective flow in

vertical slot becomes unstable with respect to the three-

dimensional disturbances.

In order to study the flow pattern which arises as a

result of development of such disturbances, we have

performed the simulation of spatially periodic three-di-

mensional flows in a cell defined by �1 < x < 1,

�4 < y < 4, �3 < z < 3, which corresponds to wave
numbers ky ¼ p=4, kz ¼ p=3.

In order to characterize a heat transfer in the cell, we

define the Nusselt number as the ratio of actual heat

transport across the layer to the heat transported only

by conduction, and average it over time:

Nu ¼ 1

s

Z s

0

R
n � rT dy dzR
n � rTb dy dz

dt;

where n is the unit vector in x-direction and s is suffi-
ciently long period of time.

First, let us discuss the situation in the range of the

Grashof number where two- and three-dimensional

flows compete against each other. Fig. 5(a) presents the

variation of the Nusselt number Nu versus the Grashof

number Gr. As it can be seen from figure, the two-

dimensional flows provide the maximal rate of heat

transfer across the layer in the range 124 < Gr < 133.
We have found that in this range of Gr, the three-di-

mensional disturbances being inserted in system leads

always to the two-dimensional solution. But if the

Grashof number exceeds the critical value, Gr ¼ 133,

the transverse rolls (or the traveling waves if to refer to

the temperature field) shown in Fig. 4 become wavy

in the z-direction. The new flow provides maximal rate

of heat transfer for Gr > 133. The described picture is
supported by the comparison of the vx and vz compo-

nents of velocity as a function of the Grashof number Gr
shown in Fig. 5(b).

We found that as the Grashof number is increased

further in small steps, the transition of the three-

dimensional flow to chaotic behavior in time proceeds

through, first, the cycle pitchfork bifurcation which

breaks symmetry and gives rise to the periodic state at
Gr ¼ 133, then the secondary Hopf bifurcation at about

Gr � 134, which leads to the quasi-periodic motion with

two independent frequencies, and ultimately to the

corrugation of the torus and the strange attractor at

Gr � 142. Some representative results including the

power spectra, Poincar�ee maps and time series for the

three-dimensional time-dependent flows are shown in

Fig. 6(a) and (b) for Gr ¼ 135 and 150, respectively. The
Poincar�ee cross-section of the phase space ðvz; vy ; T Þ has
been defined by the condition: vz ¼ 0. In fact, the z
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component of velocity characterizes the deviation of the
flow from the two-dimensional one.

It should be noted that after the pitchfork bifurcation

at Gr ¼ 133 there are two attractors (cycles, tori or

strange attractors) in the phase space of the system.

These attractors are symmetric with respect to the plane

vz ¼ 0 and may be obtained one from another by ap-

plying the transformation of symmetry. It is interesting

to point out that the plot of the power spectrum in Fig.
6(a) indicates the existence of sub-harmonic peaks that

implies the earlier sub-harmonic bifurcation of tori.

Variation of the principal frequency F1, which is re-

lated with a speed of the temperature waves, with the
Grashof number Gr is shown in Fig. 9, where line cor-

responding to three-dimensional regime of convection is

drawn in dashed style. Due to growing irregularity of
oscillations with an increase of Gr, the principal fre-

quency has been determined by maximum peak in the

corresponding power spectra. We see that in the vicinity

of bifurcation point, the results are close to those for

two-dimensional flows. But as the Grashof number Gr is
increased, the dashed line deviates more and more from

the solid one. Thus, the growth of the three-dimensional

effects in flow causes an increase of basic frequency of
oscillations. By other words, the temperature waves

move faster as the flow becomes more and more three-

dimensional.
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Thus, we see that the flow stays two-dimensional up

to Gr � 133, but for higher values of the Grashof

number the consideration of three-dimensional flows

becomes necessary. It should be noted, that in contrast
to two-dimensional convection, the three-dimensional

flow undergoes the transition to temporal chaos at

smaller value of Gr. In fact, our numerical simula-

tions predict that the flow will remain regular (i.e. pe-

riodic or quasi-periodic) in the limited range of
Fig. 7. Unsteady three-dimensional convection pattern. Lines of constant no

moment of time: (a) Gr ¼ 130; (b) Gr ¼ 135; (c) Gr ¼ 150; (d) Gr ¼ 300. Eac

constant phase velocity. Solid (dashed) lines indicate positive (negative) valu
parameter: 127 < Gr < 142. Similarly to the two-

dimensional case, the transition to chaos occurs via the

breakdown of quasi-periodic solution, but we have

documented only the torus with two independent fre-
quencies (Fig. 6(a)).

Let us discuss now the evolution of flow pattern.

Fig. 7(a)–(d) presents the lines of constant x-component

of velocity normal to the plane x ¼ 0:1 in a some fixed

moment of time for Gr ¼ 130, 135, 150 and 300,
rmal velocity, vx ¼ const:, in the plane x ¼ 0:1 are shown in some fixed

h pattern drifts as a whole structure in the negative y-direction with the

es. The solid line adjacent to the dashed ones indicates zero.



Table 1

Bifurcation values for main flow patterns

Convective flow pattern Linear stability analysis,

Gr � 10�2

Numerical results,

Gr � 10�2

Experiment, Gr � 10�2

D ¼ 50 D ¼ 75 SVD (D ¼ 75)

Pulsating transverse rolls 1.18 (for ky ¼ 0:79)

1.15 (ky ¼ 0:94)

1.24 (ky ¼ 0:79)

1.15 (ky ¼ 0:94)

1.1 1.2 –

Wavy pulsating

transverse rolls

– 1.33 (ky ¼ 0:79) 1.25 1.4 1.3

Cellular pattern

(broken rolls)

– – 1.45 1.55 –

Modulated vertical rolls – – 1.6 1.7 1.7

Fig. 8. Schematic diagram of experimental setup.
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respectively. The negative (positive) values of vx and vy
are indicated by the dashed (solid) lines. It should be

noted that each pattern shown in Fig. 7 drifts as a whole

structure in the negative y-direction with constant phase

velocity. This drift can be explained by the periodic

pulsation of the neighboring vortices in anti-phase. The

phase velocity of the drift is equal to zero only for the

plane x ¼ 0, but it becomes negative for any cross-

section x > 0 (in a colder part of the layer) and positive
for x < 0 (in a hotter part of the layer).

We see that the pattern shown in Fig. 7(a) forGr ¼ 130

corresponds to the two-dimensional transverse rolls (also

shown in x–y plane in Fig. 4). The next pattern (Fig. 7(b))

illustrates flow at Gr ¼ 135, where the rolls have already

becomewavy.As theGrashof number is increased further,

the three-dimensional effects strengthen, the rolls bend

more andmore and, ultimately pull apart giving rise to the
cellular-like pattern (Fig. 7(c),Gr ¼ 150). Sequentially, the

development of the latter flow pattern leads to the struc-

ture which we have called as ‘‘modulated vertical rolls

(streams)’’ (Fig. 7(d), Gr ¼ 300). Its existence becomes

more evident after the observation of flow animation, only

one frame of which is shown in figure. We found that the

vertical streams are composed of the pieces of pulled apart

horizontal rolls. These pieces move in flow downward
(or upward) and coalesce into longitudinal rolls.

Thus, our analysis of flow evolution has revealed four

main patterns listed in Table 1. They are two-dimensional

transverse rolls pulsating in time, the same rolls becoming

wavy, the broken rolls (or cellular pattern) and the ver-

tical rolls modulated along axes. It is important to out-

line, that non-linear dynamics of flow in time becomes

irregular already for the wavy rolls and follows generally
the Ruelle–Takens� route to the chaos. We will return to

the system pattern formation in more detail in Section 5,

where the comparison with experiment will be given.
4. Experiment

4.1. Apparatus and observation techniques

The convection cell, where flows were established, is a

rectangular cavity 300 mm high, 80 mm wide and of
variable depth (see Fig. 8, where it is indicated as 1). The

cavity is confined by two heat-exchangers, one of which

(2) consists of aluminum plates and another (3) is pre-

pared from Plexiglas. The temperature difference be-

tween the side walls can reach 20 �C allowing to study

the flow up to Gr � 400. It is maintained by pumping

water from two thermostatic units, T1 and T2, through
thermo-isolated tubes and heat-exchangers (2–3), and is
held constant to within ±0.05 �C or better during one

experiment. The heat-exchangers are separated by nar-

row Plexiglas frame (4) of variable depth (4 or 6 mm).

Thus, the aspect ratio D defined in Section 1 takes on

values 75 or 50 respectively. These values of D are large

enough in order to observe in kerosene the convective

motions with a strong interaction of opposing flows. We

found that in the case of kerosene, the aspect ratio D
should be more than 50 (see the condition (1)). As a

working fluid we have used kerosene with the following

set of the physical parameters: m ¼ 1:82� 10�6 m2/s,

v ¼ 0:701� 10�7 m2/s, b ¼ 0:955� 10�3 1/K at 20 �C.
In order to perform the visual observations of flow

patterns both in the x–y and y–z planes, one of the

heat exchanger (2) was prepared from aluminum and

was coloured black from the fluid side. Another heat
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exchanger (3) and frame (4) were prepared from Plexi-

glas and was transparent. To visualize the flow, alumi-

num powder was suspended in the fluid. The aluminum

particles are disk-shaped and tend to lie with the plane
of the disk on the stream surface. This was a very helpful

point because the broad features of flows were imme-

diately apparent. Usage of aluminum powder allowed

both to observe the average properties of the flow and to

trace the passage of a single particle. The test experi-

ments have shown that an addition of particles to the

flow varies the critical value for onset of primary in-

stability within ±3%. To discover the structure of flow
carrying the aluminum particles, two kinds of light

conditions were used: scattered light and the method of

so-called ‘‘lighting knife’’ based on optical scheme with

laser beam. The entire setup was mounted on the stable

optical bench. Images of flows were acquired with a

digital video camera connected to a microcomputer.

Temperatures were measured with copper-constantan

thermocouples connected to a digital potentiometer (5)
with fluctuation within ±0.03 �C. The temperature dif-

ference between the side walls was measured by a probe

(6) located halfway between the ends of the convection

cell. The vertical temperature gradient was carefully

controlled by a probe (7) with the thermocouple ends,

one of which was 250 mm distant from another, and

with 1.5 mm of the wires inserted into cavity. In all

experiments the horizontal temperature gradient was
about 102 as large as the vertical one, ensuring that a

secondary instability due to vertical temperature gradi-

ent could not occur.

In order to obtain the amplitude characteristics and

frequencies of oscillatory convection regimes, we used

constantan-manganin differential thermocouple (8), of

which one end of diameter 0.1 mm was inserted into the

flow in the middle part of the cavity at a distance of one
quarter of entire cell depth and another end was located

inside isothermal aluminum plate. The signal of this

thermocouple was reinforced by the amplifier (9) and

processed using a digital potentiometer (10) to digital

conversion circuitry and then recorded by microcom-

puter. This equipment made it possible to measure the

temperature pulsations better than ±0.003 �C. The noise
level did not exceed 10�4 �C. The maximal frequency of
oscillations which could be measured by this equipment

was 18 Hz.

Several basic techniques were employed to determine

the stability boundary of convection patterns. The first

technique was a direct observation by continuous

monitoring of space–time diagrams. The second tech-

nique was a derivation of the amplitude characteristics

of the flow for each fixed value of the Grashof number.
The thermocouple (8) connected to microcomputer

produced a signal, which represented the pulsation of

temperature field. The amplitude of these pulsations was

averaged over time, and sharp change of averaged am-
plitude was treated as a bifurcation point for new flow

pattern. In order to consider the dynamic features of the

system and to check the determined stability boundaries,

we performed also the technique of phase portrait re-
construction including the method of delays (Packard

et al., 1980) with preprocessing using the singular value

method proposed by Broomhead and King (1986). As it

is known, most observational data reflect just a few of

the many physical variables of a system and measure-

ments of all variables are rarely possible. However, this

difficulty can be overcome if the variables are non-lin-

early coupled, in which case the time-delay embedding
technique proposed by Packard et al. (1980) can be used

to reconstruct the phase or state space from the time

series data. In this technique a multi-dimensional

embedding space is constructed from the time series

data, and a point in it represents the state of the sys-

tem at a given time. The m-component state vector from

a time series xðtÞ can be constructed as Xi ¼ fx1ðtiÞ;
x2ðtiÞ; . . . ; xmðtiÞg where xkðtiÞ ¼ xðti þ ðk � 1ÞsÞ and s is
an appropriate time delay. The reconstruction of the

phase space from the time series data can yield the dy-

namical features in the original system, as provided

by Takens� theorem (Takens, 1981).

The phase space reconstructed by time-delay em-

bedding is noisy, and the singular spectrum analysis

(Broomhead and King, 1986) can be used to remove the

noise significantly. In this technique the m-dimensional
state vectors Xi are used to construct a trajectory matrix

X whose rows are the N vectors Xi�s. This N � m matrix

has all the dynamical features in the data and can be

used to obtain the number of linearly independent vec-

tors that describe the dynamics. The number of such

vectors is obtained from a singular spectrum analysis of

the m� m covariance matrix XTX . The number of

maximal eigenvalues ri (i ¼ 1; . . .m) of this matrix
(frequently called as ‘‘singular values’’) gives an estimate

of the number of variables and the eigenvectors give the

directions of the variables in the embedded space. The

oscillations of the system in all other directions may be

treated as noise, and can be neglected. Thus, the use of

singular value decomposition (SVD) allows to calculate

an optimal basis for the projection of the reconstructed

phase dynamics of system and decreases an influence of
noise in experimental data. This technique permits an

upper limit of the embedding dimension of attractor. It

is evident that sharp change of attractor dimension,

which manifests itself in an increase of the number of the

singular values ri defining non-noisy phase space, with

an increase of some governing parameter indicate the

appearance of new convective state, i.e. system�s bifur-

cation.
The described experimental apparatus and methods

of observation and measurement allowed to define the

stability boundary for different convection pattern

within the error 10%. In this estimate we have taken into
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account possible influences of thermal inhomogeneity of

the boundaries (aluminum––Plexiglas), the vertical gra-

dient of temperature (existing because the slot is not

actually of infinite vertical dimension), the effect of de-
pendence of viscosity on the temperature and so on.

4.2. Experimental results

In this section we present the experimental results of

determination of parameter values for the principal bi-

furcations which occur in the system, by avoiding at the

moment the detailed discussion of the system pattern
formation.

The variation of amplitude of oscillations A with the

Grashof number Gr is shown in Fig. 9. The values of A
have been averaged over time and non-dimensionalized

using half of temperature difference between side walls.

The black and open squares in the figure represent the

results obtained for layers with D ¼ 50 and 75 respec-

tively. The squares at small values of Gr corresponds to
the base stationary flow, and small deviations of ex-

perimental data from zero can be explained by a noise

which always exists in system.

We have found that the secondary flow is periodic in

time and space and arises at about Gr ¼ 1:1� 102 for

D ¼ 50 and Gr ¼ 1:2� 102 for D ¼ 75. The bifurcation

point has been determined by extrapolating the ampli-

tude curves up to the point of intersection with the axis
A ¼ 0. The critical values of Gr derived by this way are

given in Table 1. When it was not possible to determine

the onset of new convection state from amplitude

characteristics we have obtained the critical values from

visual observations.
Fig. 9. The variation of dimensionless amplitude of oscillations aver-

aged over time with the Grashof number. Black and open squares

represent the results for D ¼ 50 and 75 respectively.
The visual observations have shown that the sec-

ondary flow remains two-dimensional only for the

Grashof numbers slightly exceeding the point of the

onset of oscillations. As Gr is increased further, the new
pattern has been detected at about Gr ¼ 1:25� 102 for

D ¼ 50 and Gr ¼ 1:4� 102 for D ¼ 75. The flow be-

comes substantially three-dimensional that causes the

sharp growth of amplitude of oscillations (Fig. 9).

We found that the quaternary state of convection

arises at about Gr ¼ 1:45� 102 for D ¼ 50 and

Gr � 1:5� 102 for D ¼ 75. According to Fig. 9, the

points of bifurcation for this pattern cannot be deter-
mined so clear as before, but visual observations of flow

support these values.

The experiments have shown that at some conditions

flow may undergo one more transition. As the Grashof

number exceeds the value Gr ¼ 1:6� 102 for D ¼ 50

or Gr ¼ 1:7� 102 for D ¼ 75, we fixed the appearance

of the longitudinal rolls (or streams) standing between

ascending and descending flows.
Variation of the frequency of oscillations non-

dimensionalized by using time unit h2=m with the Gras-

hof number Gr is presented in Fig. 10. The black and

open squares indicate the results for layers with D ¼ 50

and 75 respectively. Some representative results includ-

ing the power spectra and time series are shown in Fig.

11, where all values are given in the dimension units.

The numerical and experimental values of the basic
frequency in the dimensionless unit are listed in Table 2.

Fig. 12 presents the singular values spectrum (only

five maximal values normalized to the leading value are
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Table 2

Values for the basic frequency F1

Gr Basic frequency F1 in dimensionless units

2D flows

(num.)

3D flows

(num.)

D ¼ 50

(exp.)

D ¼ 75

(exp.)

130 1.11 1.11 2.23 1.18

135 1.19 1.19 2.31 1.34

150 1.24 1.24 2.57 1.39

190 1.34 1.42 2.72 1.61
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shown) as a function of the Grashof number Gr for

D ¼ 75. A singular value, derived within SVD-method,

characterizes an intensity of phase motion in the corre-

sponding direction of the reconstructed phase space.

Thus, the number of values exceeding the level of noise

(indicated in Fig. 12 by horizontal line) gives the di-

mension of phase space. As it is seen from Fig. 12, the
embedding dimension of attractor becomes equal three

at Gr � 1:3� 102 that can be interpreted as transition

from periodic state to more complex behavior. Another

crisis of flow occurs at about Gr � 1:7� 102, when the

dimension of phase space becomes equal four. It is in-

teresting to notice the qualitative similarity of the re-

constructed phase portrait (Fig. 13(a)) with the phase
dynamics of system obtained numerically (Fig. 13(b)).

Both results correspond to Gr ¼ 135. The abscissa X1

and ordinate X2 in Fig. 13(b) are by the singular eigen-

vectors giving non-noisy subspace in the embedded

space.
5. Flow patterns: simulations versus experiment

Let us discuss how our numerical simulations made for

the layer of infinite extent correlate with experimental
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observations. All the results which we obtained both nu-

merically and experimentally for the flow evolution are

listed in Table 1, where the numbers are the critical values
of the Grashof number for the onset of a new state, and

Table 2 with the values of the principal frequency F1.
Let us consider in more detail the evolution of flow

patterns with the increase of the Grashof number. Note

that all photographs, which are discussed below, have

been made when the convection cell was illuminated in a

scattering light. Bright (dark) areas indicate predomi-

nantly the fluid motion parallel (transverse) to the side
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Fig. 13. The phase portrait of the system obtained numerically (a) and rec

correspond to Gr ¼ 135.
wall, when the aluminum particles being disk-shaped

reflect this light directly to an observer.

It is known from theory that when the Grashof

number is small enough, in the system there is a plane-
parallel flow, which is described by a cubic profile of

velocity and linear profile of temperature (6). Experi-

mental observation for this flow gives the picture,

characterizing the uniform distribution of the aluminum

particles over cavity (Fig. 14(a)). As it was mentioned

before, the theoretical analysis of the stability of a plain-

parallel flow with respect to infinitesimal disturbances

gives the critical value of the Grashof number Gr ¼ 115
for the onset of oscillations (this corresponds to the

minimum of neutral curve in Fig. 2). This value is quite

close to those Gr ¼ 1:1� 102 (D ¼ 50) and Gr ¼
1:2� 102 (D ¼ 75) obtained experimentally. And both

the theory (Fig. 7(a)) and experiment (Fig. 14(b),

Gr ¼ 130) agree on defining the pattern of the secondary

flow: this is the system of the two-dimensional trans-

verse rolls standing between downward and upward
streams. The intensities of neighboring rolls pulsate

periodically in anti-phase. This standing wave is a result

of interference of two traveling waves one of which rises

and another comes down. The process of the periodic

excitation and damping of the transverse rolls could be

easily seen visually at an observation of convective

cavity from the ends. Such observation of flow through

the Plexiglas of heat-exchanger in the scattering light
gives the integral picture of the periodic system of bright

and dark horizontal stripes (Fig. 14(b)) moving down-

ward or upward depending on the observation plane

lying near the cold or hot wall respectively. The similar

picture was observed by animation of the velocity field

(Fig. 7(a)) obtained numerically.
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onstructed from the experimental data for D ¼ 75 (b). Both pictures



Fig. 14. Photographs of flow patterns for D ¼ 75: (a) Gr ¼ 100, the plane-parallel flow; (b) Gr ¼ 130, the traveling waves, the flow oscillates peri-

odically in time; (c) Gr ¼ 145, the wavy traveling waves, the flow oscillates almost quasi-periodically; (d) Gr ¼ 160, the cellular pattern, the time

dynamics is fully chaotic; (e) Gr ¼ 190, the modulated vertical rolls and chaotic oscillations.

850 D.A. Bratsun et al. / Int. J. Heat and Fluid Flow 24 (2003) 835–852
As the Grashof number is increased further, the sec-

ondary flow becomes unstable to the three-dimensional

disturbances. The critical value of Gr we obtained nu-

merically is Gr ¼ 133 (for a cell with wave numbers

ky ¼ p=4, kz ¼ p=3). The critical values determined ex-

perimentally are Gr ¼ 1:25� 102 for D ¼ 50 and

Gr ¼ 1:4� 102 for D ¼ 75. Both in the numerical sim-
ulation (Fig. 7(b), Gr ¼ 135) and in the experiment (Fig.
14(c), Gr ¼ 145) the instability giving rise to tertiary

flow is a wavy instability. It means that the roll pattern

becomes wavy in the horizontal direction. The heat ex-

change between cold and hot streams in the flow in-

tensifies and results in the growth of amplitude of

oscillations and the Nusselt number.

Further increase of the Grashof number Gr leads to
more influence of the three-dimensional effects on flow
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pattern causing the wavy rolls to be pulled apart. This

produces the cellular-like pattern shown in Fig. 7(c)

(Gr ¼ 150) and Fig. 14(d) (Gr ¼ 160).

The most intriguing flow pattern forms at about
Gr ¼ 1:6� 102 (D ¼ 50) or Gr ¼ 1:7� 102 (D ¼ 75). A

typical photograph of such a flow is shown inFig. 14(e) for

Gr ¼ 190. Due to numerical complexity we could not

determine the onset of this flow numerically, but observed

a similar structure at Gr ¼ 200 and larger values of Gr
(Fig. 7(d), Gr ¼ 300). We found that evolution of the

broken rolls leads to the vertical rolls. There are two series

of such structure: one standing in ascending flow and
another in descending flow. These vertical rolls are not

uniform along their axes: the modulation waves

travel along them downward in cold flow and upward in

hot flow such a way that the fluid elements move on a

spiral path.

The comparative analysis of the data obtained nu-

merically and experimentally has shown that there exists

qualitative and sometimes even quantitative agreement.
It is important to note, that for higher values of the

Grashof number the agreement becomes solely qualita-

tive. In our opinion, the problem geometry used in nu-

merical simulations is the main reason for that. It is

evident that the theoretical assumption of an infinity of

the layer, which permits to consider spatially periodic

flows, is a model simplifying the analysis. On the other

hand, the experimental setup has a limited vertical ex-
tent and consequently finite aspect ratio. In order to

permit to the oscillatory disturbances in the opposing

streams to grow up to interaction between them, one

needs to have the experimental slot sufficiently long.

This allows to compare experimental results with those

for infinite layer, where such an interaction is assumed

a priori. As we noticed in Section 1, the choice of

a working fluid is limited to the range 206 Pr6 40. In
our experiments we used the kerosene Pr ¼ 26 which

applies the condition D > 50 on the height of the slot.

By analyzing the experimental data listed in Tables 1 and

2, one can conclude that the aspect ratio of cavity has

strong influence on the flow, but as the D is increased, the

results tend to approximate those obtained numerically

for infinite layer. Thus, if the cavity with D ¼ 50 gives

the frequency of oscillations twice as great as theoreti-
cal value, then the cavity with D ¼ 75 gives the value

which is close to the theoretical one (Fig. 9).
6. Summary

Non-linear dynamics and pattern formation of the

thermal convection in a tall vertical slot differently hea-
ted from the side walls were studied both numerically

and experimentally. The kerosene have been chosen as a

working fluid, because its Prandtl number Pr ¼ 26 is
large enough to ensure an onset of traveling waves

as primary instability and small enough to prevent an

occurrence of boundary layer convection.

In the numerical simulation we have accepted an
approximation of infinite layer. The finite-difference and

spectral-element methods have been applied to study

two- and three-dimensional flows respectively.

In the part of the experimental study, we have used the

convection cells with aspect ratio 50 and 75. The stability

boundaries have been determined on the base of visual

observations, reprocessing of local values of temperature

field recorded from the several thermocouples, analysis of
the power spectra and amplitude characteristics of oscil-

lations.

We have found that the transition from a plain-par-

allel cubic profile flow to the convection motions, which

are chaotic in time, occurs after a small number of

quasi-periodic bifurcations, final destruction of high-

dimensional torus (dimension three or four) and ap-

pearance of strange attractor. The evolution of flow
pattern to space irregularity includes the following se-

quence of events. In the beginning the plane-parallel

flow becomes unstable to pulsating transverse rolls lo-

cated between ascending and descending flows. As the

Grashof number increases, these rolls become wavy and

eventually are pulled apart giving rise to cellular-like

pattern. Finally, the system evolves to the longitudinal

rolls chaotically modulated along their axes.
Thus, the special choice of a working fluid and the

taking into account several factors has made it possible

for the first time to follow the evolution of the traveling-

wave instability with the Grashof number up to values of

Gr twice as high as the value of oscillations onset. The

comparison of the experimental data with the numerical

results for infinite layer has shown a satisfactory agree-

ment between them.
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